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The ability to accurately predict the motion of nearby agents such as vehicles and pedestrians is of
paramount importance for achieving fully autonomous driving [6, 10, 7, 5, 13, 12]. Apart from the
use in on-board prediction systems facilitating planning in self-driving cars, learned models of human
driving behaviors are now also being used to create realistic non-playable characters (NPCs) for
simulators in which self-driving cars can be tested and trained [9, 1]. In this setting, it is particularly
problematic if the models predict behaviors that result in serious infractions, such as colliding with
other agents or going off-road too often, as the resulting simulations would be drastically unrealistic.
The problem of excess infractions can be to some extent mitigated by introducing additional penalties
for infractions at behavior model training time, which are referred to as “common sense losses” in
[9].

Like all machine learning models, the ones predicting human driving behavior suffer from degraded
performance under domain shift, which in this case, in particular, occurs when the models are
deployed in locations not covered in the training dataset. This includes increased infraction rates,
which is a major obstacle when creating simulations with NPCs learned from data collected on
different roads. In this paper, we present a general algorithm called TITRATED (Training ITRA
to Emulate Desiderate) for fine-tuning behavior prediction models to novel settings where human
demonstrations are not available.

We use ITRA [8] as the model of choice for predicting driving behaviors, but any other probabilistic
behavior prediction model can be used with the methodology presented in this paper. While the high
level algorithm for performing rejection sampling and amortized inference is model-agnostic, we
focus the presentation on ITRA for concreteness.

Each agent in ITRA is modeled as a conditional variational recurrent neural network (VRNN) [2],
with latent variables zit. The joint predictive distribution of ITRA factorizes as

p(s1:T ) =

T∏
t=1

Nt∏
i=1

∫ ∫
p(zit)p(a

i
t|Iit , zit, hit−1)p(sit|sit−1, ait) dz

1:Nt
1:T da1:Nt1:T

where sit and ait are the state and action of the individual agent i at time t, st is the full state of the
world at time t, Iit is the observation of st available to agent i in the form of a birdview representation,
and hit is the recurrent state. The transition to the next state sit = kin(sit−1, a

i
t) is produced by a

kinematic bicycle model. The model is trained as usual, jointly with a separate inference network, by
maximizing the evidence lower bound (ELBO).

We focus on addressing infractions that we never want to see in predictions, specifically, collisions
and off-road invasions. Figure 1 illustrates the aim and results of our work. For each agent i and
time t, the current state sit and the fixed dimensions (li, wi) define a bounding box Cit ∈ R4×2,
represented as four corners of the vehicle. We define our collision metric as the sum of individual
Intersection-over-Union (IoU) values across time

LC(C1:T ) =

T∑
t=1

Nt∑
j 6=i

IoU(Cit , C
j
t ).
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Figure 1: Examples from finetuning ITRA to the novel setting of CARLA. On its own ITRA produces
unacceptable levels of infractions on CARLA maps, both in terms of collisions (top row) and off-
road-driving (bottom row). Our method, TITRATED, substantially reduces both forms of infractions.
Colored lines indicate the path moving vehicles took to get where they are.

using a differentiable version of the IoU metric as described in [14].

For off-road infractions, we assume that we have access to a triangle mesh V defining the driveable
area (road surfaces, etc.). Given a function Φ that computes the distance from a point to a triangle,
we define the off-road infraction metric as the sum of distances of the corners of all vehicles from the
road mesh across time

LOR(C1:T , V ) =

T∑
t=1

Nt∑
i=1

∑
cj∈Cit

min
v∈V

Φ(cj , v).

This metric can be computed efficiently in a differentiable manner [4]. Note that it is zero only when
all four corners of all vehicles are contained within the driveable area.

We define A to be the event that no vehicle performed an infraction within the specified time window
A := (LC = 0) ∧ (LOR = 0).

and obtain a better behavior model by further conditioning on not performing infractions, denoted
here as the conditional density p(s1:T |A).

Unfortunately, sampling from the conditional distribution p(s1:T |A) can be computationally ex-
pensive. For this reason, we learn a model pθ(s1:T ) ≈ p(s1:T |A), which can be sampled from
sequentially in fixed time. To do so, we generate examples of infraction-free trajectories in an off-line
setting as shown in Algorithm 1 given a collection D of initial conditions on target maps.

Algorithm 1 Infraction-Free Dataset Generation
Input: Initial conditions dataset D

Driving behaviour model p(s1:T )
Maximum number of trials max_trials

Output: Infraction-Free dataset D̃
1: D̃ ← ∅
2: for (s0, V ) ∈ D do
3: found← false
4: for n← 1 to max_trials do
5: Sample rollout s1:T from p(s1:T |s0)
6: Convert states s1:T to bounding boxes C1:T

7: if LC(C1:T ) = 0 and LOR(C1:T , V ) = 0 then
8: found← true
9: break

10: if found then
11: D̃ ← D̃ ∪ {(s1:T , V )}
12: return D̃

This procedure is simple but can be computationally expensive, since rejection sampling can take
arbitrarily long time to produce acceptable samples. In order to limit computational cost, we introduce
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Scene Collision Rate ×10−4 Off-road Rate ×10−4

ITRA TITRATED Reduction ITRA TITRATED Reduction

Town01_Straight 26.0 2.0 91.97% 42.7 0 100%
Town01_3way 19.4 4.8 75.06% 11.3 0 100%

Town02_Straight 11.2 2.8 80.53% 51.5 1.6 96.74%
Town02_3way 10.0 3.3 66.20% 33.9 0 100%

Town03_Roundabout 5.0 1.7 65.60% 134.0 47.1 64.83%
Town03_5way 4.6 1.6 63.26% 95.8 37.5 60.78%
Town03_4way 6.0 2.5 58.33% 67.2 34.2 49.07%
Town03_3way_Unprotected 6.3 2.7 56.82% 74.8 42.3 43.42%
Town03_3way_Protected 10.4 4.9 52.50% 84.9 41.5 51.14%
Town03_GasStation 6.6 0.6 90.54% 32.8 13.2 59.69%

Town04_Merging 0.2 0.1 13.63% 47.8 0 100%
Town04_3way_Large 8.0 2.3 71.25% 11.2 0 100%
Town04_3way_Small 16.6 6.4 61.20% 29.6 0.8 97.14%
Town04_4way_Stop 10.9 4.7 56.60% 32.4 11.6 64.12%
Town04_Parking 6.5 4.7 26.76% 44.7 5.3 87.98%

Town06_Merge_Single 1.7 1.1 32.94% 109.6 27.6 74.83%
Town06_4way_large 1.7 0.3 79.70% 7.3 1.5 79.21%
Town06_Merge_Double 1.8 0.5 71.72% 2.3 0 100%

Town07_3way 6.9 2.2 66.95% 45.3 3.1 93.14%
Town07_4way 7.8 2.3 70.51% 60.6 3.1 94.80%

Town10HD_4way 3.6 1.7 51.11% 51.1 21.1 58.76%
Town10HD_3way_Protected 4.5 1.6 63.33% 76.2 26.3 65.52%
Town10HD_3way_Stop 3.6 1.9 45.00% 62.5 17.2 72.43%

Average 7.8 2.4 68.20% 52.6 14.5 72.26%
Table 1: Rates of driving infractions in various CARLA scenes, with (TITRATED) and without
(ITRA) the fine-tuning proposed in this paper.

a max_trials parameter, which indicates the maximum number of sampling attempts performed,
after which the item is excluded from the dataset if an acceptable sample was not found.

Using the synthetic dataset of infraction-free trajectories, we amortize the inference process

Es1:T∼p(s1:T |A)

[
log pθ(s1:T )

]
by optimizing the ELBO objective, following the standard training

process of ITRA

LELBO = E
s1:T∼p(s1:T |A)

[ T−1∑
t=1

Nt∑
i=1

(
E

qφ(zit|ait,Iit ,hit)

[
log pθ(s

i
t+1|Iit , zit, hit)

]
−KL

[
qφ(zit|ait, Iit , hit)||pθ(zit)

] )]
where qφ is a separate inference network trained jointly with the model pθ. Learned models of human
driving behavior, such as ITRA, are prone to generate excessive infractions. We ameliorate this
problem by introducing explicit infraction penalties obtained when sampling from the amortized
model pθ, as additional loss terms

L = −LELBO + λCLC + λORLOR.

This is the final training objective for TITRATED, although some care needs to be taken when
minimizing it, since LELBO involves sampling from the inference network, while LC and LOR involve
sampling from the prior. We address this by performing two separate rollouts for each training
example.

In our experiments, we, at a high level, learn human driving behaviors from the INTERACTION
dataset [11] and use them to create NPCs in CARLA [3]. We take a trained ITRA model obtained
exactly as described in [8] and fine tune it to obtain TITRATED models for a collection of selected
locations in CARLA. Our goal is to maintain maximum similarity to ITRA predictions while reducing
the incidence of driving infractions, consisting of collisions and off-road invasions, in these novel
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Figure 2: Scatter plots of infraction rates achieved by TITRATED versus the number of items rejected
from the synthetic dataset. Different points correspond to max_trials values ∈ {1, 10, 20, 50, 100}
used in rejection sampling, increasing to the left. Straight lines are fit with least squares to extrapolate
performance to a setting with perfect inference algorithms where no items are rejected.
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Figure 3: Kernel density estimates of acceleration distributions for TITRATED, ITRA, CARLA
autopilot, and real human data. Acceleration values are normalized using highest values present in
human data.

simulator contexts. We created a custom synthetic dataset of initial conditions using the built-in
autopilot in CARLA. Table 1 shows that TITRATED is able to significantly reduce the collision and
off-road rates of ITRA. Specifically, we first generate an ITRA rollout for each initial condition in
the corresponding CARLA dataset and compute infraction rates. We do the same for TITRATED
rollouts. We see that, averaged across all CARLA locations, TITRATED is able to reduce collisions
by 68% and off-road invasions by 72%.

The key component of TITRATED is the Bayesian inference algorithm for computing and sampling
from the conditional distribution p(s1:T |A). We investigated how using increasingly more powerful
inference algorithms could impact the performance of TITRATED, trying to extrapolate to the
setting of a perfect inference oracle that is able to produce samples with no infractions in all cases.
We selected three representative locations from the CARLA dataset, covering a straight road, a
roundabout, and a 4-way intersection. For each of those locations, we ran the full TITRATED training
procedure with varying values ofmax_trials ∈ {1, 10, 20, 50, 100}. To analyze the scaling behavior
as the inference algorithm improves, we plotted the infraction rate of TITRATED against the fraction
of rejected examples in Figure 2. Somewhat surprisingly, this scaling tends to be close to linear,
allowing us to extrapolate to a setting with a perfect inference algorithm that finds acceptable samples
for all training examples. In most, but not all cases, the extrapolated line achieves zero infraction rate
before achieving full dataset coverage, suggesting that the use of better inference algorithms could
remove infractions entirely.

In Figure 3, we present the probability densities of vehicle acceleration. The primary motivation
for this work was to create NPCs for CARLA exhibiting human-like driving behavior. While this is
largely subjective and no definitive metrics are agreed-upon by the community, in this experiment
we seek to demonstrate that in some sense, TITRATED indeed generates more human-like driving
behavior than the CARLA autopilot. In all three cases, CARLA autopilot has a highly peaked
acceleration distribution around zero, while the distribution of human acceleration values is more
spread, corresponding to a higher diversity of controls applied by humans. We see that both ITRA
and TITRATED are more realistic than the CARLA autopilot, in the sense of the distribution of
accelerations being more spread.
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